Long-Range Stabilization of Anthrax Protective Antigen upon Binding to CMG2

نویسندگان

  • Vennela Mullangi
  • Sireesha Mamillapalli
  • David J. Anderson
  • James G. Bann
  • Masaru Miyagi
چکیده

Protective antigen (PA) mediates entry of edema factor (EF) and lethal factor (LF) into the cytoplasmic space of the cells through the formation of a membrane-spanning pore. To do this, PA must initially bind to a host cellular receptor. Recent mass spectrometry analysis of PA using histidine hydrogen-deuterium exchange (His-HDX) has shown that binding of the von Willebrand factor A (vWA) domain of the receptor capillary morphogenesis protein-2 (CMG2) lowers the exchange rates of the imidazole C2 hydrogen of several histidines, suggesting that receptor binding decreases the structural flexibility of PA. Here, using His-HDX and fluorescence as a function of denaturant, and protease susceptibility, we show that binding of the vWA domain of CMG2 largely increases the stability of PA and the effect reaches up to 70 Å from the receptor binding interface. We also show that the pKa values and HDX rates of histidines located in separate domains change upon receptor binding. These results indicate that when one end of the protein is anchored, the structure of PA is tightened, noncovalent interactions are strengthened, and the global stability of the protein increases. These findings suggest that CMG2 may be used to stabilize PA in future anthrax vaccines.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Onset of anthrax toxin pore formation.

Protective antigen (PA) is the anthrax toxin protein recognized by capillary morphogenesis gene 2 (CMG2), a transmembrane cellular receptor. Upon activation, seven ligand-receptor units self-assemble into a heptameric ring-like complex that becomes endocytozed by the host cell. A critical step in the subsequent intoxication process is the formation and insertion of a pore into the endosome memb...

متن کامل

Recombinant HSA-CMG2 Is a Promising Anthrax Toxin Inhibitor.

Anthrax toxin is the major virulence factor produced by Bacillus anthracis. Protective antigen (PA) is the key component of the toxin and has been confirmed as the main target for the development of toxin inhibitors. The inhibition of the binding of PA to its receptor, capillary morphogenesis protein-2 (CMG2), can effectively block anthrax intoxication. The recombinant, soluble von Willebrand f...

متن کامل

The Receptors that Mediate the Direct Lethality of Anthrax Toxin

Tumor endothelium marker-8 (TEM8) and capillary morphogenesis protein-2 (CMG2) are the two well-characterized anthrax toxin receptors, each containing a von Willebrand factor A (vWA) domain responsible for anthrax protective antigen (PA) binding. Recently, a cell-based analysis was used to implicate another vWA domain-containing protein, integrin β1 as a third anthrax toxin receptor. To explore...

متن کامل

A FRET-Based High Throughput Screening Assay to Identify Inhibitors of Anthrax Protective Antigen Binding to Capillary Morphogenesis Gene 2 Protein

Anti-angiogenic therapies are effective for the treatment of cancer, a variety of ocular diseases, and have potential benefits in cardiovascular disease, arthritis, and psoriasis. We have previously shown that anthrax protective antigen (PA), a non-pathogenic component of anthrax toxin, is an inhibitor of angiogenesis, apparently as a result of interaction with the cell surface receptors capill...

متن کامل

Receptor-specific requirements for anthrax toxin delivery into cells.

The three proteins that constitute anthrax toxin self-assemble into toxic complexes after one of these proteins, protective antigen (PA), binds to tumor endothelial marker 8 (TEM8) or capillary morphogenesis protein 2 (CMG2) cellular receptors. The toxin receptor complexes are internalized, and acidic endosomal pH triggers pore formation by PA and translocation of the catalytic subunits into th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 53  شماره 

صفحات  -

تاریخ انتشار 2014